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This paper addresses a new technique for solving the inverse geometry heat conduction problem of the
Laplace equation in a two-dimensional rectangle, which, named regularized integral equation method
(RIEM), consists of three parts. First of all, the Fourier series expansion technique is used to calculate
the temperature field u(x,y). Second, we consider a Lavrentiev regularization by adding a term ag(x) to
obtain a second kind Fredholm integral equation. The termwise separable property of the kernel function
allows us to transform the inverse geometry heat conduction problem into a two-point boundary value
problem and therefore, an analytical regularized solution is derived in the final part by using orthogonal-
ity. Principally, the RIEM possesses the following advantages: it does not need any guess of the initial pro-
file, it does not need any iteration and a regularized closed-form solution can be obtained. The uniform
convergence and error estimate of the regularized solution ua(x,y) are proved and a boundary geometry
p(x) is solved by half-interval method. Several numerical examples present the effectiveness of our novel
approach in providing excellent estimates of unknown boundary shapes from given data.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last several decades, much interest has been directed
towards the use of inverse techniques for solving different engi-
neering problems that cannot be described mathematically by di-
rect approaches. This situation arises when all the required data
to cope with a direct problem or to attain a reliable direct solution
are not available. The inverse problem can be defined as a problem
that one or more conditions are absent for a corresponding direct
problem. Such a problem is much more difficult to solve than a di-
rect one.

The inverse geometry heat conduction problem is ill-posed in
the sense that from the external measurements on one side we
have an incomplete data set from which we are required to identify
unknown irregular boundary configurations. In order to solve the
problem, the progresses have been made, including the Leven-
berg–Marquardt method [5], the conjugate gradient method [1–
9], the simplified conjugate gradient method [10], and the steepest
descent method [11]. Recently, many researchers have concen-
trated on infrared scanners and their applications to nondestruc-
tive evaluation [12–14].
ll rights reserved.
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In the present paper, we cast the inverse geometry heat conduc-
tion problem into a first kind Fredholm integral equation, and then
we address a Lavrentiev regularization to transform it into a sec-
ond kind Fredholm integral equation. By employing the kernel
function separate characteristic and eigenfunctions expansion
technique, we can derive an analytical solution of the second kind
Fredholm integral equation. This method was first used by Liu [15]
to solve a direct problem of elastic torsion in an arbitrary plane do-
main, where it was called a meshless regularized integral equation
method. Then, Liu [16,17] extended it to solve the Laplace direct
problem in arbitrary plane domains. The novel method employs
a laconic numerical implementation to cope with the difficulties
of the inverse geometry heat conduction problem.
2. The collocation method

We consider a two-dimensional steady-state heat conduction
problem given as follows:

uxx þ uyy ¼ 0; 0 < x < ‘; ð1Þ
uxð0; yÞ ¼ uxð‘; yÞ ¼ 0; ð2Þ
uðx;0Þ ¼ f ðxÞ; 0 6 x 6 ‘; ð3Þ
uyðx;0Þ ¼ �q0; 0 6 x 6 ‘; ð4Þ
uðx; pðxÞÞ ¼ u0; 0 6 x 6 ‘; ð5Þ
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Nomenclature

a0 Fourier coefficient defined in Eq. (21)
ak Fourier coefficient defined in Eq. (22)
A0 Fourier coefficient defined in Eq. (7)
Ak Fourier coefficient defined in Eq. (8)
A a matrix defined in Eq. (16)
b y-axial length
b a vector defined in Eq. (16)
b0 Fourier coefficient defined in Eq. (23)
bk Fourier coefficient defined in Eq. (24)
b�0 Fourier coefficient defined in Eq. (58)
b�k Fourier coefficient defined in Eq. (59)
c a constant vector used in Eq. (14)
ck+1 a constant used in Eq. (18)
d a constant vector used in Eq. (42)
e0 a constant defined in Eq. (66)
ek a constant defined in Eq. (67)
f(x) a given function maybe obtained through measurement
g(x) an unknown function
Im+1 m + 1-dimensional unit matrix
K(x,n) the Kernel defined in Eq. (29)
‘ x-axial length
L2(0,‘) set of square-integrable functions on (0,‘)
m the summation upper bound used in Eqs. (10) and (31)
M a sequence of positive numbers

p(x) an unknown boundary geometry
q0 a constant heat flux
P, Q m-vectors defined in Eq. (33)
R(i) random numbers
R a matrix defined in Eq. (47)
u temperature distribution
u0 a constant temperature
ua regularized solution
u1(x) vector-valued function of x defined in Eq. (35)
u2(x) vector-valued function of x defined in Eq. (36)
x space variable

Greek symbols
a regularized parameter
djk the Kronecker delta
e belongs to (0,1)
n space variable used in Eq. (7)
r noise level

Subscripts and superscripts
i index
jk indices
k index
T transpose
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where f(x) is a given function perhaps obtained through measure-
ment, q0 is a given constant heat flux, u0 is a given constant temper-
ature, and p(x) is an unknown boundary geometry to be determined
under an overspecified data of f(x). The problem setup with its
physical model, the geometry and the coordinates are shown in
Fig. 1.

The present inverse problem is to use the data u0, q0 and f(x) to
find the unknown shape function p(x), where the temperature is
fixed to be u0. Here, we tentatively assume that p(x) is a known
function in order to compare it with our numerical result of the
boundary shape function p(x) reconstructed by the present new
method and assess the accuracy of the new method.
0u

0q

Fig. 1. Shape geometry and x–y coordinates.
For the given constants q0 and u0 and the given function p(x),
there were many numerical approaches which could be employed
to solve the direct problem for giving the data of f(x). We will use
the collocation method to calculate the data f(x) if it is not avail-
able. In [5], the function f(x) is obtained from the measured tem-
perature data at the bottom of a rectangle.

However, in order to obtain the function f(x) for the later use we
address a different numerical method. Suppose that g(x) is an un-
known function with u(x,b) = g(x), where b is a constant deter-
mined by the user, only requiring b > p(x), which together with
conditions (2) and (4) lead to

uðx; yÞ ¼ A0 � q0ðy� bÞ þ
X1
k¼1

Ak
coshðkpy=‘Þ
sinhðbkp=‘Þ cos

kpx
‘
; ð6Þ

where

A0 ¼
1
‘

Z ‘

0
gðnÞdn; ð7Þ

Ak ¼
2 tanhðbkp=‘Þ

‘

Z ‘

0
gðnÞ cos

kpn
‘

dn: ð8Þ

We are going to employ the collocation method to determine the
unknown coefficients when the boundary geometry p(x) is given.

By imposing condition (5) on Eq. (6), we obtain

A0 þ
X1
k¼1

Ak
coshðkppðxÞ=‘Þ

sinhðbkp=‘Þ

� �
cos

kpx
‘
¼ u0 þ q0pðxÞ � q0b: ð9Þ

Eq. (9) can be used to determine the unknown coefficients in Eq. (6).
The series expansion in Eq. (9) is well suited in the range of

x 2 [0,‘]. Therefore, we may have an admissible function with finite
terms

A0 þ
Xm

k¼1

Ak
coshðkppðxÞ=‘Þ

sinhðbkp=‘Þ

� �
cos

kpx
‘
¼ u0 þ q0pðxÞ � q0b;

0 6 x 6 ‘: ð10Þ

Our task below is to find Ak, k = 0,1, . . . ,m from Eq. (10).
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Eq. (10) is imposed at n = m + 1 different collocated points xi on
the interval with 0 6 xi 6 ‘:

A0 þ
Xm

k¼1

Ak
coshðkppðxiÞ=‘Þ

sinhðbkp=‘Þ

� �
cos

kpxi

‘
¼ u0 þ q0pðxiÞ � q0b: ð11Þ

Let

xi ¼ iDx; i ¼ 0;1; . . . ;m; ð12Þ

where Dx = ‘/n. When the index i in Eq. (11) runs from 0 to m, we
obtain a linear equations system with dimensions n = m + 1:
1 cosh½pðx0Þp=‘� cosðpx0=‘Þ
sinhðbp=‘Þ

cosh½2pðx0Þp=‘� cosð2px0=‘Þ
sinhð2bp=‘Þ � � � cosh½mpðx0Þp=‘� cosðmpx0=‘Þ

sinhðmbp=‘Þ

1 cosh½pðx1Þp=‘� cosðpx1=‘Þ
sinhðbp=‘Þ

cosh½2pðx1Þp=‘� cosð2px1=‘Þ
sinhð2bp=‘Þ � � � cosh½mpðx1Þp=‘� cosðmpx1=‘Þ

sinhðmbp=‘Þ

1 cosh½pðx2Þp=‘� cosðpx2=‘Þ
sinhðbp=‘Þ

cosh½2pðx2Þp=‘� cosð2px2=‘Þ
sinhð2bp=‘Þ � � � cosh½mpðx2Þp=‘� cosðmpx2=‘Þ

sinhðmbp=‘Þ

..

. ..
. ..

. ..
. ..

.

1 cosh½pðxm�1Þp=‘� cosðpxm�1=‘Þ
sinhðbp=‘Þ

cosh½2pðxm�1Þp=‘� cosð2pxm�1=‘Þ
sinhð2bp=‘Þ � � � cosh½mpðxm�1Þp=‘� cosðmpxm�1=‘Þ

sinhðmbp=‘Þ

1 cosh½pðxmÞp=‘� cosðpxm=‘Þ
sinhðbp=‘Þ

cosh½2pðxmÞp=‘� cosð2pxm=‘Þ
sinhð2bp=‘Þ � � � cosh½mpðxmÞp=‘� cosðmpxm=‘Þ

sinhðmbp=‘Þ

2
6666666666664

3
7777777777775

A0

A1

A2

..

.

Am

2
66666664

3
77777775
¼

u0 þ q0½pðx0Þ � b�
u0 þ q0½pðx1Þ � b�
u0 þ q0½pðx2Þ � b�

..

.

u0 þ q0½pðxm�1Þ � b�
u0 þ q0½pðxmÞ � b�

2
6666666664

3
7777777775
: ð13Þ
We denote the above equation by

Rc ¼ h; ð14Þ

where c = (c1, . . . ,cm+1)T = (A0,A1,A2, . . . ,Am)T is the vector of un-
known coefficients. The superscript T represents the transpose.

The conjugate gradient method can be used to solve the follow-
ing normal equation with a specified convergent criterion, e.g.,
e = 10�6:

Ac ¼ b; ð15Þ

where

A :¼ RTR;b :¼ RTh: ð16Þ

Inserting the calculated c into Eq. (6), we can calculate u(x,y) at any
point in the problem domain by

uðx; yÞ ¼ c1 � q0ðy� bÞ þ
Xm

k¼1

ckþ1
coshðkpy=‘Þ
sinhðbkp=‘Þ

� �
cos

kpx
‘
: ð17Þ

Therefore, in view of Eq. (3) by inserting y = 0 into the above equa-
tion we can obtain the following data:

f ðxÞ ¼ c1 þ q0bþ
Xm

k¼1

ckþ1

sinhðbkp=‘Þ

� �
cos

kpx
‘
: ð18Þ
3. The inverse geometry heat conduction problem

The present inverse geometry heat conduction problem is to
determine the boundary shape p(x) in Eq. (5) by using the over-
specified boundary conditions (3) and (4) on the bottom side.

In order to solve the inverse geometry heat conduction prob-
lem, we assume that there exists an unknown function
g(x) 2 L2(0,‘) such that u(x,b) = g(x). Thus, in place of Eq. (4) we
consider the following boundary condition:

uðx; bÞ ¼ gðxÞ; 0 6 x 6 ‘; ð19Þ

where g(x) is an unknown function to be determined below.
By utilizing the technique of separation of variables, we are apt

to write a series expansion of u(x,y) satisfying Eqs. (1)–(3) and (19):

uðx; yÞ ¼ a0ðb� yÞ þ b0y

þ
X1
k¼1

ak
sinh½ðb� yÞkp=‘�

sinhðbkp=‘Þ þ bk
sinhðkpy=‘Þ
sinhðbkp=‘Þ

� �
cos

kpx
‘
;

ð20Þ
where

a0 ¼
1
b‘

Z ‘

0
f ðnÞdn; ð21Þ

ak ¼
2
‘

Z ‘

0
f ðnÞ cos

kpn
‘

dn; ð22Þ

b0 ¼
1
b‘

Z ‘

0
gðnÞdn; ð23Þ

bk ¼
2
‘

Z ‘

0
gðnÞ cos

kpn
‘

dn: ð24Þ
If g(x) is available, which together with the given or measured
f(x) we can calculate all the above coefficients, and then using Eq.
(20) to solve p(x) from u(x,p(x)) = u0 by the half-interval method,
we can attain a boundary geometry along which the temperature
is u0.

4. The Fredholm integral equation

In the following three sections, we will derive a new method to
find the unknown function g(x). Taking the differential of Eq. (20)
with respect to y, we obtain

ouðx; yÞ
oy

¼ b0 � a0 þ
X1
k¼1

kp
‘
�ak

cosh½ðb� yÞkp=‘�
sinhðbkp=‘Þ

�

þbk
coshðkpy=‘Þ
sinhðbkp=‘Þ

�
cos

kpx
‘
: ð25Þ

By imposing the condition in Eq. (4) on the above equation, we
attain

b0 þ
p
‘

X1
k¼1

bk
k

sinhðbkp=‘Þ cos
kpx
‘
¼ hðxÞ; ð26Þ

where

hðxÞ ¼ a0 þ
p
‘

X1
k¼1

ak
k coshðbkp=‘Þ
sinhðbkp=‘Þ cos

kpx
‘
� q0: ð27Þ

Substituting Eq. (23) for b0 and Eq. (24) for bk into Eq. (26), it follows
thatZ ‘

0
Kðx; nÞgðnÞdn ¼ hðxÞ; ð28Þ

where

Kðx; nÞ ¼ 1
b‘
þ 2p

‘2

X1
k¼1

k
sinhðbkp=‘Þ cos

kpx
‘

cos
kpn
‘

ð29Þ

is a kernel function.
In order to obtain g(x), we have to deal with the first kind Fred-

holm integral Eq. (28), which is known to be ill-posed.

5. Two-point boundary value problem

We suppose that there exists a regularized parameter a, such
that Eq. (28) can be regularized by
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agðxÞ þ
Z ‘

0
Kðx; nÞgðnÞdn ¼ hðxÞ; ð30Þ

which is a second kind Fredholm integral equation. This regulariza-
tion technique is known as the Lavrentiev regularization [18]. We
also presume that the kernel function can be approximated by m
terms with

Kðx; nÞ ¼ 1
b‘
þ 2p

‘2

Xm

k¼1

k
sinhðbkp=‘Þ cos

kpx
‘

cos
kpn
‘
: ð31Þ

However, this supposition is not essential, because when the re-
quired equations are derived, we can supersede m by 1 again. It
can be seen below that Eq. (30) is well-posed and the above series
is convergent.

By inspection, we have

Kðx; nÞ ¼ PðxÞ � Q ðnÞ; ð32Þ

where P and Q are m-vectors given by

P :¼

1
b‘

2p
‘2 sinhðbp=‘Þ cos px

‘

4p
‘2 sinhð2bp=‘Þ cos 2px

‘

..

.

2mp
‘2 sinhðmbp=‘Þ cos mpx

‘

2
66666666664

3
77777777775
; Q :¼

1

cos pn
‘

cos 2pn
‘

..

.

cos mpn
‘

2
6666666664

3
7777777775

ð33Þ

and the dot between P and Q denotes the inner product, which is
sometime written as PTQ for convenience. With the aid of Eq.
(32), Eq. (30) can be decomposed as

agðxÞ þ
Z x

0
PTðxÞQ ðnÞgðnÞdnþ

Z ‘

x
PTðxÞQ ðnÞgðnÞdn ¼ hðxÞ: ð34Þ

Let us define

u1ðxÞ :¼
Z x

0
Q ðnÞgðnÞdn; ð35Þ

u2ðxÞ :¼
Z x

‘

Q ðnÞgðnÞdn ð36Þ

and Eq. (34) can be expressed as

agðxÞ þ PTðxÞ½u1ðxÞ � u2ðxÞ� ¼ hðxÞ: ð37Þ

Taking the differentials of Eqs. (35) and (36) with respect to x, we
obtain

u01ðxÞ ¼ Q ðxÞgðxÞ; ð38Þ
u02ðxÞ ¼ Q ðxÞgðxÞ: ð39Þ

Inserting Eq. (37) for g(x) into the above two equations, we acquire

au01ðxÞ ¼ Q ðxÞPTðxÞ½u2ðxÞ � u1ðxÞ� þ hðxÞQ ðxÞ; u1ð0Þ ¼ 0; ð40Þ
au02ðxÞ ¼ Q ðxÞPTðxÞ½u2ðxÞ � u1ðxÞ� þ hðxÞQ ðxÞ; u2ð‘Þ ¼ 0; ð41Þ

where the last two conditions follow from Eqs. (35) and (36) read-
ily. The above two equations constitute a two-point boundary value
problem.

6. An analytical regularized solution

In this section, we will find an analytical solution for g(x). From
Eqs. (38) and (39), it can be seen that u01 ¼ u02, which means that

u1 ¼ u2 þ d; ð42Þ

where d is a constant vector to be determined. By using the final
condition in Eq. (41), we find that

u1ð‘Þ ¼ u2ð‘Þ þ d ¼ d: ð43Þ

Substituting Eq. (42) into (40), we have
au01ðxÞ ¼ �Q ðxÞPTðxÞdþ hðxÞQ ðxÞ; u1ð0Þ ¼ 0: ð44Þ

Integrating and using the initial condition, it follows that

u1ðxÞ ¼
�1
a

Z x

0
Q ðnÞPTðnÞdndþ 1

a

Z x

0
hðnÞQ ðnÞdn: ð45Þ

Taking x = ‘ in the above equation and imposing the condition (43),
one obtains a governing equation for d:

Rd ¼
Z ‘

0
hðnÞQ ðnÞdn; ð46Þ

where

R :¼ aImþ1 þ
Z ‘

0
Q ðnÞPTðnÞdn: ð47Þ

It is straightforward to write

d ¼ R�1
Z ‘

0
hðnÞQ ðnÞdn: ð48Þ

On the other hand, from Eqs. (37) and (42) we have

agðxÞ ¼ hðxÞ � PðxÞ � d: ð49Þ

Inserting Eq. (48) into the above equation, we obtain

agðxÞ ¼ hðxÞ � PðxÞ � R�1
Z ‘

0
hðnÞQ ðnÞdn: ð50Þ

Due to the orthogonality ofZ ‘

0
cos

jpn
‘

cos
kpn
‘

dn ¼ ‘

2
djk; ð51Þ

where djk is the Kronecker delta, the (m + 1) � (m + 1) matrix can be
written asZ ‘

0
Q ðnÞPTðnÞdn

¼ diag
1
b
;

p
‘ sinhðbp=‘Þ ;

2p
‘ sinhð2bp=‘Þ ; . . . ;

mp
‘ sinhðmbp=‘Þ

� �
; ð52Þ

where diag means that the matrix is a diagonal matrix. Inserting Eq.
(52) into Eq. (50), we therefore obtain

gðxÞ ¼ 1
a

hðxÞ � 1
a

PTðxÞdiag
b

1þ ba
;

1
aþ p

‘ sinhðbp=‘Þ
;

1
aþ 2p

‘ sinhð2bp=‘Þ
;

"

. . . ;
1

aþ mp
‘ sinhðmbp=‘Þ

# Z ‘

0
hðnÞQ ðnÞdn: ð53Þ

While we use Eq. (33) for P and Q, we can get

gðxÞ ¼ 1
a

hðxÞ � 1
a‘ð1þ baÞ

Z ‘

0
hðnÞdn� 2

a‘

X1
k¼1

kp
‘ sinhðkbp=‘Þ

aþ kp
‘ sinhðkbp=‘Þ

�
Z ‘

0
cos

kpx
‘

cos
kpn
‘

hðnÞdn: ð54Þ

Because our argument to derive the above equation does not
depend on m, we have replaced mw by 1. For a given h(x) by Eq.
(27), we may employ the above equation to calculate g(x).

Moreover, if g(x) in Eq. (54) is available, we can insert it into Eqs.
(23) and (24) and utilize the orthogonality Eq. (51) to acquire

b0 ¼
1

‘ð1þ baÞ

Z ‘

0
hðnÞdn; ð55Þ

bk ¼
2

‘ aþ kp
‘ sinhðkbp=‘Þ

h i Z ‘

0
cos

kpn
‘

hðnÞdn: ð56Þ

Then, from Eq. (20) we can calculate ua(x,y), where we use the sym-
bol ua(x,y) to denote the present solution is a regularized one. Fig. 2
displays the flow chart of RIEM.
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7. Error estimation

In the previous section, we have derived a regularized solution
ua(x,y) of Eqs. (1)–(4) under the regularized format (30) with a
regularized parameter a > 0. We can prove the following main
results.

Taking a = 0 in Eqs. (55) and (56) and inserting them into Eq.
(20), we obtain a formal solution of Eqs. (1)–(4):

uðx; yÞ ¼ a0ðb� yÞ þ b�0y

þ
X1
k¼1

ak
sinh½ðb� yÞkp=‘�

sinhðbkp=‘Þ þ b�k
sinhðkpy=‘Þ
sinhðbkp=‘Þ

� �
cos

kpx
‘
;

ð57Þ

where a0 and ak are still given by Eqs. (21) and (22) and

b�0 ¼
1
‘

Z ‘

0
hðnÞdn; ð58Þ

b�k ¼
2
kp

sinhðkbp=‘Þ

Z ‘

0
cos

kpn
‘

hðnÞdn: ð59Þ

According to the above equations, we can prove the following
results.

Theorem 1. Suppose that the data h(x) 2 L2(0,‘). Then, the sufficient
and necessary condition that the inverse problem (1)–(4) has a
solution is that

b2

4‘2

Z ‘

0
hðnÞdn

� �2

þ
X1
k¼1

sinh2ðkbp=‘Þ
k2p2

Z ‘

0
cos

kpn
‘

hðnÞdn

� �2

<1:

ð60Þ

Proof. Inserting y = b into Eq. (57) and noting Eqs. (19), (58) and
(59), we have

gðxÞ ¼ uðx;bÞ ¼ b
‘

Z ‘

0
hðnÞdnþ

X1
k¼1

2
kp

sinhðkbp=‘Þ

Z ‘

0
cos

kpn
‘

hðnÞdncos
kpx
‘
;

ð61Þ

where g(x) 2 L2(0,‘). The above is a Fourier cosine series of g(x), and
by the Parseval equality we have

b2

‘2

Z ‘

0
hðnÞdn

� �2

þ
X1
k¼1

4

kp
sinhðkbp=‘Þ

� 	2

Z ‘

0
cos

kpn
‘

hðnÞdn

� �2

¼ kgðxÞk2
L2ð0;‘Þ <1: ð62Þ

This proves the sufficient and necessary condition. h

Theorem 2. If the data h(x) satisfies condition (60) and there exists
an e 2 (0,1), such that

b2ð1þeÞ

2‘2

Z ‘

0
hðnÞdn

� �2

þ
X1
k¼1

sinh2ðkbp=‘Þ
k2p2

" #1þe Z ‘

0
cos

kpn
‘

hðnÞdn

� �2

:¼ M2ðeÞ
2‘

<1; ð63Þ

then for any a > 0 the regularized solution ua(x, t) satisfies the following
error estimation:

kuaðx; yÞ � uðx; yÞkL2ð0;‘Þ 6 aeMðeÞ: ð64Þ

Proof. From Eqs. (20), (55)–(59) it follows that

uðx; yÞ � uaðx; yÞ ¼ e0yþ
X1
k¼1

ek
sinhðkpy=‘Þ
sinhðbkp=‘Þ cos

kpx
‘
; ð65Þ
where

e0 ¼
ba

‘ð1þ baÞ

Z ‘

0
hðnÞdn; ð66Þ

ek ¼
2a sinhðkbp=‘Þ

kp aþ kp
‘ sinhðkbp=‘Þ

h i Z ‘

0
cos

kpn
‘

hðnÞdn: ð67Þ

Thus, for any e 2 (0,1) we have the following estimation:

kuðx; tÞ � uaðx; tÞk2
L2ð0;‘Þ

6
b2a2

‘
½ðb�1 þ aÞeðb�1 þ aÞ1�e��2

Z ‘

0
hðnÞdn

� �2

þ 2‘a2
X1
k¼1

sinhðkpy=‘Þ
sinhðbkp=‘Þ

� �2 sinh2ðkbp=‘Þ
k2p2

� aþ kp
‘ sinhðkbp=‘Þ

� �e

aþ kp
‘ sinhðkbp=‘Þ

� �1�e
" #�2

�
Z ‘

0
cos

kpn
‘

hðnÞdn

� �2

6
b2a2

‘
b2ea�2þ2e

Z ‘

0
hðnÞdn

� �2

þ 2‘a2
X1
k¼1

sinh2ðkbp=‘Þ
k2p2

� ‘2sinh2ðkbp=‘Þ
k2p2

" #e

½a1�e��2
Z ‘

0
cos

kpn
‘

hðnÞdn

� �2

¼ a2e

‘
b2ð1þeÞ

Z ‘

0
hðnÞdn

� �2

þ 2‘a2e
X1
k¼1

sinh2ðkbp=‘Þ
k2p2

" #1þe

�
Z ‘

0
cos

kpn
‘

hðnÞdn

� �2

: ð68Þ

Therefore, we complete the proof. h

The above two theorems are vital to verify that the proposed
regularization is workable. Although the problem we consider is
ill-posed, we have assumed that the exact solution is existent in or-
der to cast the error estimate in a manner that is typical in partial
differential equation approximations.

8. Numerical examples

Before embarking the numerical study of the novel solver, we
are interested in its stability, when the boundary measured data
are contaminated by random noise. We can assess the stability
by adding different level of random noise on the boundary mea-
sured data and investigate its effect. We employ the function
RANDOM_NUMBER given in Fortran to generate the noisy data
R(i), where R(i) are random numbers in (0, 1). Therefore, we use
the Gaussian noise given by [19]

f̂ ðxiÞ ¼ f ðxiÞ þ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 lnðRRÞ=RR

q
½2RðiÞ � 1�; ð69Þ

RR ¼ R2ðiÞ þ ½2RðiÞ � 1�2: ð70Þ
8.1. Example 1

In the first example we consider the inverse geometry problem
with f(x) given exactly. Therefore, we can directly skip to Section 6
by using the RIEM to solve this problem.

When u(x,b) = 100cos(px/‘) is given, we can easily to write a
solution of u(x,y) satisfying Eqs. (1)–(4):

uðx; yÞ ¼ a0ðb� yÞ þ b0y

þ a1 sinh½ðb� yÞp=‘�
sinhðbp=‘Þ þ b1 sinhðpy=‘Þ

sinhðbp=‘Þ

� �
cos

px
‘
; ð71Þ
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where

a0 ¼ q0; ð72Þ

a1 ¼
100

coshðbp=‘Þ ; ð73Þ

b0 ¼ 0; ð74Þ
b1 ¼ 100: ð75Þ

Substituting Eq. (5) into Eq. (71) and through some calculations, we
obtain

�q0½pðxÞ � b� þ 100
cosh½pðxÞp=‘�

coshðbp=‘Þ

� �
cos

px
‘
¼ 160: ð76Þ

Through the half-interval method we obtain p(x) by the above equa-
tion with b = ‘ = 10, q0 = 20 and u0 = 160 as shown in Fig. 3a with the
solid line.

We are going to use the RIEM to calculate g(x) when f(x) = 10
q0 + 100cos(px/‘)/cosh(10p/‘) is given. Substituting Eq. (5) into
Eq. (20) and through some calculations, we obtain the following
regularized solution:

uaðx; pðxÞÞ ¼ a0½b� pðxÞ� þ b0pðxÞ

þ a1 sinh½ðb� pðxÞÞp=‘�
sinhðbp=‘Þ þ b1 sinh½ppðxÞ=‘�

sinhðbp=‘Þ

� �
cos

px
‘
;

ð77Þ
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where

a0 ¼ q0; ð78Þ

a1 ¼
100

coshðbp=‘Þ ; ð79Þ

b0 ¼ 0; ð80Þ

b1 ¼
100p

‘a sinhðbp=‘Þ þ p
: ð81Þ

For this case, we can employ a = 0 without any difficulty be-
cause Eq. (81) is still applicable. Through the half-interval method
we can acquire p(x) by the above equation as shown in Fig. 3a with
the dashed line, and the numerical error is zero as shown in Fig. 3b.
Without exception when we use the half-interval method, the con-
vergent criterion is fixed to be e1 = 10�7.

8.2. Example 2

Substituting Eq. (18) into Eqs. (21) and (22), we can obtain

a0 ¼
1
b
ðc1 þ q0bÞ; ð82Þ

ak ¼
ckþ1

sinhðbkp=‘Þ ; ð83Þ

where k = 1, . . . ,m. Inserting Eq. (27) into Eqs. (55) and (56), we can
get

b0 ¼
c1

bð1þ baÞ ; ð84Þ

bk ¼
kpak coshðbkp=‘Þ

a‘ sinhðbkp=‘Þ þ kp
; ð85Þ
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Fig. 5. For Example 2 with a sinusoidal shape we have compared the boundary
shape obtained by the numerical inverse method under a noise with the exact one
in (a), and then plotted the numerical error in (b).
where k = 1, . . . ,m. Hence, the analytical regularized solution is gi-
ven by Eq. (20) with

uaðx; yÞ ¼ a0ðb� yÞ þ b0y

þ
Xm

k¼1

ak
sinh½ðb� yÞkp=‘�

sinhðbkp=‘Þ þ bk
sinhðkpy=‘Þ
sinhðbkp=‘Þ

� �
cos

kpx
‘
:

ð86Þ

Let us then consider a sinusoidal shape p(x) given as follows:

pðxÞ ¼ 1:5þ 0:8 sin
px
5

� 	
; 0 6 x 6 ‘: ð87Þ

We first employ the collocation method in Section 2 to find the
data f(x) and use the RIEM to calculate the data g(x), which are
plotted in Fig. 4a. In this calculation, we have fixed ‘ = 10, b = 3.5,
q0 = 20, u0 = 100, and m = 20. By the numerical inverse technique
developed in Section 6 and the half-interval method, we can esti-
mate p(x) by using the data f(x) and Eqs. (86) and (5).

The exact p(x) and the computed p(x) by the inverse method are
compared in Fig. 4b with a = 0.001. The dashed-dotted line shows
the numerical result and the solid line displays the exact value. It
can be seen that the data p(x) is recovered well. Because these
two curves are close, we also sketched the error in Fig. 4c, from
which it can be seen that the maximum error is about 0.1957.
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In the case when the boundary measured data f(x) are contam-
inated by random noise, we are also concerned with the stability of
our algorithm. We have investigated this by adding random noise
to the data f(x). The numerical result with noise r = 1.0 � 2.576 was
compared with the exact one in Fig. 5a. The factor 2.576 was cho-
sen to represent the 99% confidence bound for the temperature
measurement. It can be seen that the noise disturbs the numerical
solution slightly from the one without considering noise. We also
plotted the error in Fig. 5b, from which it can be seen that the max-
imum error is about 0.1983, which is slightly larger than the one
without considering the disturbance by noise.

8.3. Example 3

Let us then consider a triangular shape p(x) as follows:

pðxÞ ¼
1:5þ 0:3x; 0 6 x 6 ‘

2 ;

4:5� 0:3x; ‘
2 6 x 6 ‘:

(
ð88Þ

We utilize the collocation method in Section 2 to find the data
f(x) and use the RIEM to calculate the data g(x), which is plotted
in Fig. 6a. In this calculation, we have fixed ‘ = 10, b = 3.5, q0 = 20,
u0 = 100, and m = 20. By the numerical inverse technique devel-
oped in Section 6 and the half-interval method, we can estimate
p(x) by using the data f(x) and Eqs. (86) and (5). The exact p(x)
and the computed p(x) by the inverse method are compared in
Fig. 6b with a = 0.002. The dashed-dotted line shows the numerical
result and the solid line displays the exact value. It can be seen that
the data p(x) is recovered very well. Because these two curves are
close, we also plotted the error in Fig. 6c, from which it can be seen
that the maximum error is about 0.07.
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Fig. 7. For Example 3 with a triangular shape we have compared the boundary
shape obtained by the numerical inverse method under a noise with the exact one
in (a), and then plotted the numerical error in (b).
The numerical result with noise r = 2.0 � 2.576 was compared
with the exact one in Fig. 7a. It can be seen that the noise disturbs
the numerical solution deviating from the exact one very small. We
also sketched the error in Fig. 7b, from which it can be seen that the
maximum error is about 0.07, which is slightly larger than the case
without considering the disturbance by noise.

8.4. Example 4

Let us further consider a step function p(x) as follows:

pðxÞ ¼
3:0; 0 6 x 6 ‘

2 ;

1:5; ‘
2 < x 6 ‘:

(
ð89Þ

We use the collocation method in Section 2 to find the data f(x)
and use the RIEM to calculate the data g(x), which is sketched in
Fig. 8a. In this calculation, we have fixed ‘ = 10, b = 3.5, q0 = 20,
u0 = 100, and m = 100. By the numerical inverse technique devel-
oped in Section 6 and the half-interval method, we can estimate
p(x) by using the data f(x) and Eqs. (86) and (5). The exact p(x)
and the computed p(x) by the inverse method are compared in
Fig. 8b with a = 0.0001. The dashed-dotted line shows the numer-
ical result and the solid line displays the exact value. We also plot-
ted the error in Fig. 8c, from which it can be seen that the
maximum error is about 1.4697.

The numerical result with noise r = 2.0 � 2.576 was compared
with the exact one in Fig. 9a. We also plotted the error in Fig. 9b,
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method with the exact one in (b), and then plotted the numerical error in (c).
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from which it can be seen that the maximum error is about 1.4751,
which is slightly larger than the case without considering the dis-
turbance by noise.

Huang and Chao [5] have compared the numerical results for
the above three examples calculated by the Levenberg–Marquardt
and conjugate gradient algorithms. When comparing our results in
Figs. 4, 6 and 8 with Figs. 2, 3, 5 and 7 in [5], it is evident that the
new approach can provide a more accurate numerical result than
that by the above mentioned methods. We also compare the exact
result with the numerical one with noise in Figs. 5, 7 and 9 and in
Figs. 4, 6 and 8 of [5]. It is obvious that our results are also better
than those calculated by Huang and Chao [5].

9. Conclusions

The idea of identifying the unknown boundary configurations is
modeled by an inverse Cauchy problem of the Laplace equation.
First of all, we have used the collocation method to calculate the
data f(x) if it is not available. Then, by employing the Fourier series
expansion technique and a termwise separable property of kernel
function, an analytical solution for approximating the inverse
problem is presented. The uniform convergence and error estimate
of the regularized solution are provided and a boundary geometry
p(x) is solved by using the half-interval method. Several numerical
examples have shown that the current approach can identify the
unknown irregular boundary configurations very well, and excel-
lent numerical results are obtained even under a large noise distur-
bance on the measured data.
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